

Multi-use activities

Consortium partners

- Academic and industrial partners
- Pilot lead: Ghent University
- Multi-use activities:
 - Aquaculture of seaweed and flat oysters
 - Restoration of oyster reefs
 - Offshore wind

3rd UNITED online workshop – Aquaculture Multi-Use Offshore: Technology Transfer

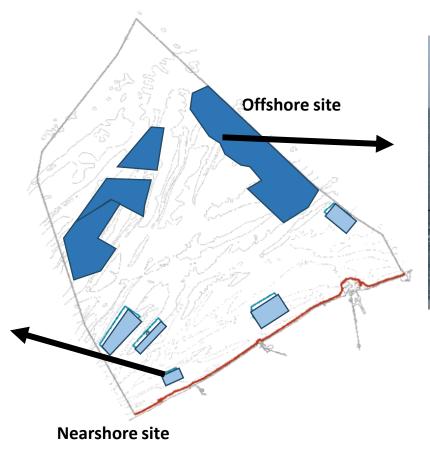
Project locations

- Nearshore: Westdiep area (5 km) = European protected area (NATURA 2000)
- Offshore: Belwind wind farm (46 km)

3rd UNITED online workshop – Aquaculture Multi-Use Offshore: Technology Transfer

Project locations

- Nearshore: Westdiep area (5 km) = European protected area (NATURA 2000)
- Offshore: Belwind wind farm (46 km)
- Difference:
 - Eutrophication
 - Depth
 - Hydrodynamics
 - Level of safety measures



Strategy

- First nearshore testing of systems before moving offshore with best suited materials and methods
- Focus on commercially viable options

3rd UNITED online workshop – Aquaculture Multi-Use Offshore: Technology Transfer

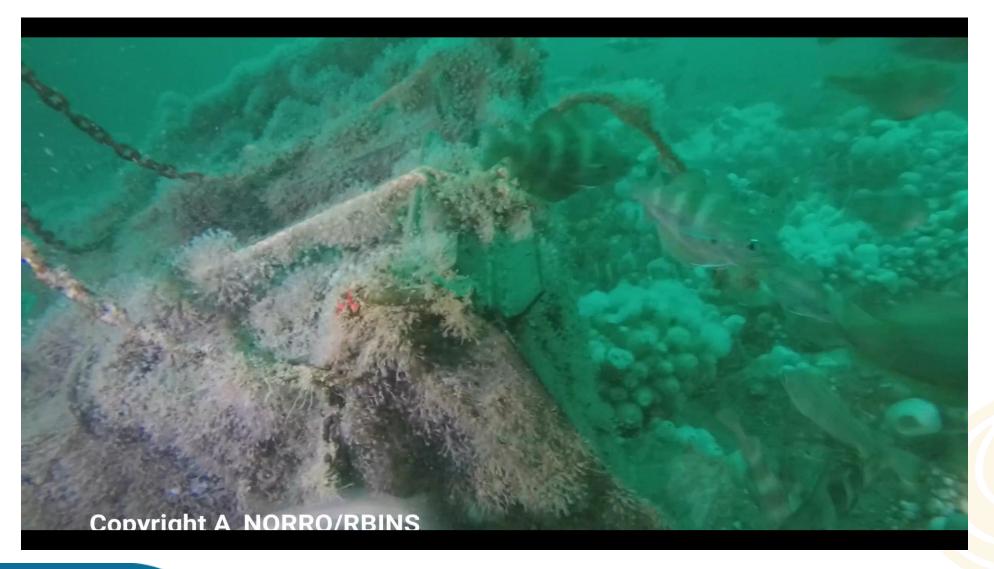
Oyster cultivation and restoration

3rd UNITED online workshop – Aquaculture Multi-Use Offshore: Technology Transfer

Preoperational phase - nearshore testing

- Fouling on cultivation structures is a major challenge
 - Hydrozoans (Tubularia)
 - Amphipods (Jassa and Corophium)
 - Requires regular maintenance

Successful observation of flat oyster spat


settlement

Video fragment from UNITED diving campaign in Belwind

Oyster cultivation and restoration

3rd UNITED online workshop – Aquaculture Multi-Use Offshore: Technology Transfer

Fouling in restoration = a mixed story

- Settlement of Ostrea edulis spat
- Embryonic reef formation by Ross worm Sabellaria spinulosa
- Biogenic reefs support high biodiversity
- Dominant fouling species competing for space (Metridium, Crepidula)

Seaweed cultivation nearshore/pre-operational

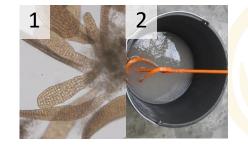
• Identification and development of suitable cultivation techniques for offshore conditions

1st year (Nov 20 – May 21)

¹ 2nd year (Nov 21 – May 22)

Substrates

Nursery period



Adapted

Direct seeding

Seaweed cultivation nearshore/pre-operational: Overview

Nov 2020 Feb 2021 May 2021

3rd UNITED online workshop – Aquaculture Multi-Use Offshore: Technology Transfer

Seaweed cultivation nearshore/pre-operational: Seeding method

3rd UNITED online workshop – Aquaculture Multi-Use Offshore: Technology Transfer

Seaweed cultivation – 1st sampling Feb 2021

Nursery seeding

Direct seeding

Seaweed cultivation nearshore/pre-operational: substrate

3rd UNITED online workshop – Aquaculture Multi-Use Offshore: Technology Transfer

Nearshore net type

Offshore net type

Seaweed cultivation nearshore/pre-operational: fouling community

3rd UNITED online workshop – Aquaculture Multi-Use Offshore: Technology Transfer

- Overall 20 species of fouling organisms identified
- Dominated by hydrozoans (Tubularia larynx) and amphipods (Jassa herdmani & Jassa marmorata)

Tubularia larynx

15

Fouling on seaweed nets

Seaweed cultivation nearshore/pre-operational: fouling community

3rd UNITED online workshop – Aquaculture Multi-Use Offshore: Technology Transfer

- Overall 20 species of fouling organisms identified
- Hydrozoans (Tubularia larynx) and amphipods (Jassa herdmani & Jassa marmorata) dominating

Jassa herdmani

Jassa marmorata

Cuthona gymnota

Facelina bostoniensis

Fouling on aquaculture and restoration structures

3rd UNITED online workshop – Aquaculture Multi-Use Offshore: Technology Transfer

Summary & Lessons learned

- Fouling on structures increases strongly in spring, dominated by hydrozoans and amphipods
- No major fouling on seaweed biomass
- Optimising substrate, seeding success and cultivation system design can lower fouling
 - Good cover with seaweeds early in the cultivation cycle can prevent extensive fouling
- Moving offshore = lower SPM, making this environment more suitable
 - Difference in fouling intensity remains to be assessed

andclerc.declercq@ugent.be
tkerkhove@naturalsciences.be
jessica.knoop@ugent.be